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' ABSTRACT g RESULTS .

gackground and Objectives: Mitochondria plays a major role in the pathophysiologm
of complex metabolic traits such as obesity, insulin resistance and fatty liver disease.
However, the exact causal relationship between mitochondrial function and these
traits is not completely understood. Similarly, sex differences in susceptibility to
metabolic phenotypes have been amply described in mice, humans and other species,
with females generally exhibiting a beneficial metabolic profile. Yet, the vast majority
of previous studies examined sex differences in phenotypes or gene expression in
isolation, generating trait or tissue specific results without putting them in context of
genetic variation.

Methods: To understand the nature of the sex differences and causal relationships,

/ Figure 1. Sex- and tissue- specific profiles of OXPHOS genes in both mice and humans. \
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OXPHOS genes: Female HMDP (75/91 genes up); Female STARNET (56/80 genes up); no enrichments in liver.

Figure 2. Adipose mitochondria levels strongly predict metabolic traits in both mice and humans.

RESULTS

/ Figure 3. Sex-specific genetic architecture of adipose mitochondrial gene expression. \

B HMDP female adipose mitochondria \l, Chr17 trans-eQTL hub

A HMDP male adipose mitochondria
. - . - P < 1E-06: 89 genes

Gene position

PR y ma BN Ifi
12 3 4 5 6 7 8 910111213 14 151617(819 X

SNP position

2 3 4 5 6 7 8 910111213 14 1516[17)819 X

SNP position
OXPHOS genes: Female HMDP (unique trans-eQTL hotspot) that controls ~89 genes (P < 1e-06).

Figure 4. Animal overexpression studies to validate the role of adipose NDUFV2 in obesity.
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