Do adverse childhood experiences influence sensitivity to side-effects and reward behavior on hormonal contraceptives?

Andrew Novick MD PhD1 (presenting author), Joel Stoddard MD MAS1, Rachel Johnson MS2, Mary Sammel ScD1,2, and C. Neill Epperson MD1,3

1. Department of Psychiatry, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA; 2. Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA; 3. Department of Family Medicine, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045

Background

• Hormonal contraceptives (HC) are frequently discontinued due to emotional and sexual side-effects, increasing risk of unplanned pregnancy (1).

• Compared with endogenous estradiol and progesterone, hormone analogs used in HC may decrease aspects of reward processing such as motivation for reward or the ability to feel pleasure (2,3).

• Adverse childhood experiences (ACE) prior to puberty are associated with both deficits in reward processing (5) and negative neuropsychiatric effects due to changes in ovarian steroids (4).

Objectives

• Evaluate the influence of ACE on decreased reward processing on HC via a large-scale cross-sectional study using an online reward task.

• Using cross-sectional data, design a placebo-controlled fMRI study to investigate the neural effects of HC on reward processing in vulnerable women.

Methods

• N = 1029 women (N=541 on HC, N=488 not on HC) in generally good health, between the ages of 18-40.

• Participants completed an online reward task based on Jepma et al (8) and Wilroth et al (9) designed to evaluate reward expectancy and reward responsiveness for non-erotic pleasant images, erotic images and neutral images.

Fig 1. Reward Task

• Participants completed surveys on demographic information, health history, depression, anxiety, stress, and relationship experiences.
Do adverse childhood experiences influence sensitivity to side-effects and reward behavior on hormonal contraceptives?

Andrew Novick MD PhD (presenting author), Joel Stoddard MD MAS, Rachel Johnson MS, Mary Sammel ScD, and C. Neill Epperson MD

Results

Table 1: Selected Demographics

<table>
<thead>
<tr>
<th>Demographics variable</th>
<th>Female study completers (N = 1029)</th>
<th>Females non-HC (N = 488)</th>
<th>Females HC (N = 541)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>28.7 (5.2)</td>
<td>29.0 (5.6)</td>
<td>28.5 (4.8)</td>
<td>0.125</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td>0.012</td>
</tr>
<tr>
<td>Asian</td>
<td>78 (7.6%)</td>
<td>46 (9.4%)</td>
<td>32 (5.9%)</td>
<td></td>
</tr>
<tr>
<td>Black or African American</td>
<td>40 (3.9%)</td>
<td>26 (5.3%)</td>
<td>14 (2.6%)</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>844 (82.0%)</td>
<td>383 (78.5%)</td>
<td>461 (85.2%)</td>
<td></td>
</tr>
<tr>
<td>Other/multiracial</td>
<td>67 (6.5%)</td>
<td>33 (6.8%)</td>
<td>34 (6.3%)</td>
<td></td>
</tr>
<tr>
<td>Sexual orientation</td>
<td></td>
<td></td>
<td></td>
<td>0.085</td>
</tr>
<tr>
<td>Heterosexual</td>
<td>802 (77.9%)</td>
<td>373 (76.4%)</td>
<td>429 (79.3%)</td>
<td></td>
</tr>
<tr>
<td>Bisexual</td>
<td>156 (15.2%)</td>
<td>75 (15.4%)</td>
<td>81 (15.0%)</td>
<td></td>
</tr>
<tr>
<td>Homosexual/gay/lesbian</td>
<td>35 (3.4%)</td>
<td>24 (4.9%)</td>
<td>11 (2.0%)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>36 (3.5%)</td>
<td>16 (3.3%)</td>
<td>20 (3.7%)</td>
<td></td>
</tr>
<tr>
<td>Relationship status</td>
<td></td>
<td></td>
<td></td>
<td>0.003</td>
</tr>
<tr>
<td>In a relationship</td>
<td>684 (66.5%)</td>
<td>300 (61.5%)</td>
<td>384 (71.0%)</td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>345 (33.5%)</td>
<td>188 (38.5%)</td>
<td>157 (29.0%)</td>
<td></td>
</tr>
<tr>
<td>Highest education level</td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>High school diploma or less</td>
<td>172 (16.7%)</td>
<td>107 (21.9%)</td>
<td>65 (12.0%)</td>
<td></td>
</tr>
<tr>
<td>College degree</td>
<td>499 (48.5%)</td>
<td>224 (45.9%)</td>
<td>275 (50.8%)</td>
<td></td>
</tr>
<tr>
<td>Master’s/professional degree</td>
<td>358 (34.8%)</td>
<td>157 (32.2%)</td>
<td>201 (37.2%)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Types of Hormonal Birth Control in HC group.

<table>
<thead>
<tr>
<th>Hormonal birth control type</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormonal IUD</td>
<td>227 (42.4%)</td>
</tr>
<tr>
<td>Implant</td>
<td>35 (6.5%)</td>
</tr>
<tr>
<td>Oral contraceptive pills</td>
<td>246 (45.9%)</td>
</tr>
<tr>
<td>Injections</td>
<td>6 (1.1%)</td>
</tr>
<tr>
<td>Vaginal ring</td>
<td>22 (4.1%)</td>
</tr>
</tbody>
</table>

Adverse Childhood Experiences (ACE) and Current HC Use

![Graph showing the comparison between low ACE and high ACE on hormonal contraceptives](chart.png)

Fig 2. Significantly greater proportion of women with low ACE on HC compared to women with high ACE (p=0.043).
Do adverse childhood experiences influence sensitivity to side-effects and reward behavior on hormonal contraceptives?

Andrew Novick MD PhD (presenting author), Joel Stoddard MD MAS, Rachel Johnson MS, Mary Sammel ScD, and C. Neill Epperson MD

Results

Fig 3. Proportion of women reporting mood and sexual side-effects from HC was significantly greater among those with high ACE vs low prepubertal ACE (p=0.033).

Fig 4 and 5. Significant interactions between prepubertal ACE and HC use for average expected (p=0.029) and experienced (p=0.025) valence ratings for erotic images. #Among those not on HC, women with high ACE had increased expected (p=0.0025) valence ratings vs low ACE. *Among low ACE women, those on HC had higher experienced valence ratings vs. no HC (p=0.022).
Do adverse childhood experiences influence sensitivity to side-effects and reward behavior on hormonal contraceptives?

Andrew Novick MD PhD (presenting author), Joel Stoddard MD MAS, Rachel Johnson MS, Mary Sammel ScD, and C. Neill Epperson MD

Summary

- ACE may increase risk of HC-induced side-effects related to mood and sexual function (Figs 2, 3)
 - ACE known to increase vulnerability to negative neuropsychiatric effects of hormonal changes (4).
- In women not on HC, high prepubertal ACE might increase reward anticipation to erotic stimuli but not other pleasant stimuli (Figs 4, 5)
 - Overall, prepubertal ACE associated with decreased reward anticipation and responsiveness (5).
 - However, some evidence that ACE sensitizes individuals to sexual stimuli (6).
- In women with low prepubertal ACE, HC might increase reward sensitivity to erotic stimuli (Figs 4, 5)
 - HC known to improve sexual function in some women (7).
 - Pharmacological effect of HC vs other factors? Survivor effect?
- Unlike women with low prepubertal ACE, women with high prepubertal ACE taking HC did not have indications of higher reward sensitivity to erotic stimuli compared to those not taking HC
 - While other factors likely, survivor effect may have masked decreased reward sensitivity among high ACE women on HC.

Future Directions: Planned Placebo-Controlled Study of HC and reward processing

Main Outcome Measures:
1. Expected and Experienced Valence Ratings of Images
2. Neural activity during reward expectation and receipt in reward sensitive brain regions (nucleus accumbens and medial prefrontal cortex)
Do adverse childhood experiences influence sensitivity to side-effects and
reward behavior on hormonal contraceptives?

Andrew Novick MD PhD (presenting author), Joel Stoddard MD MAS, Rachel Johnson MS, Mary Sammel ScD, and C. Neill Epperson MD

References

Acknowledgements

Research reported in this poster was supported by the following grants:

NIH U54 AG062319 (AMN, PI Kohrt)
NIH R01 CA215587 (CNE)
NIH R01 DA037289 (CNE)
Junior Faculty Seed Grant, Center for Women’s Health Research, University of Colorado (AMN).

Contents are the authors’ sole responsibility and do not necessarily represent official NIH views.